Muscle-specific receptor tyrosine kinase endocytosis in acetylcholine receptor clustering in response to agrin.
نویسندگان
چکیده
Agrin, a factor used by motoneurons to direct acetylcholine receptor (AChR) clustering at the neuromuscular junction, initiates signal transduction by activating the muscle-specific receptor tyrosine kinase (MuSK). However, the underlying mechanisms remain poorly defined. Here, we demonstrated that MuSK became rapidly internalized in response to agrin, which appeared to be required for induced AChR clustering. Moreover, we provided evidence for a role of N-ethylmaleimide sensitive factor (NSF) in regulating MuSK endocytosis and subsequent signaling in response to agrin stimulation. NSF interacts directly with MuSK with nanomolar affinity, and treatment of muscle cells with the NSF inhibitor N-ethylmaleimide, mutation of NSF, or suppression of NSF expression all inhibited agrin-induced AChR clustering. Furthermore, suppression of NSF expression and NSF mutation attenuate MuSK downstream signaling. Our study reveals a potentially novel mechanism that regulates agrin/MuSK signaling cascade.
منابع مشابه
Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering.
Agrin, a motoneuron-derived factor, and the muscle-specific receptor tyrosine kinase (MuSK) are essential for the acetylcholine receptor (AChR) clustering at the postjunctional membrane. However, the underlying signaling mechanisms remain poorly defined. We show that agrin stimulates a dynamic translocation of the AChR into lipid rafts-cholesterol and sphingolipid-rich microdomains in the plasm...
متن کاملA role for the juxtamembrane domain of beta-dystroglycan in agrin-induced acetylcholine receptor clustering.
Synaptic differentiation results from an exchange of informational molecules between synaptic partners during development. At the vertebrate neuromuscular junction, agrin is one molecule presented by the presynaptic motor neuron that plays an instructive role in postsynaptic differentiation of the muscle cell, most notably in aggregation of acetylcholine receptors (AChRs). Although agrin is the...
متن کاملThe Ig1/2 domain of MuSK binds to muscle surface and is involved in acetylcholine receptor clustering.
The neuromuscular junction, the synapse between motor neurons and muscle cells, serves as an excellent model for studying synapse formation. Agrin is believed to be released by motor neurons to induce postsynaptic differentiation at the neuromuscular junction. MuSK, a receptor tyrosine kinase, appears to be a key component of the agrin receptor complex. However, how agrin activates MuSK remains...
متن کاملLaminin-induced Acetylcholine Receptor Clustering: An Alternative Pathway
The induction of acetylcholine receptor (AChR) clustering by neurally released agrin is a critical, early step in the formation of the neuromuscular junction. Laminin, a component of the muscle fiber basal lamina, also induces AChR clustering. We find that induction of AChR clustering in C2 myotubes is specific for laminin-1; neither laminin-2 (merosin) nor laminin-11 (a synapse-specific isofor...
متن کاملAgrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation
Agrin is thought to be the nerve-derived factor that initiates acetylcholine receptor (AChR) clustering at the developing neuromuscularjunction. We have investigated the signaling pathway in mouse C2 myotubes and report that agrin induces a rapid but transient tyrosine phosphorylation of the AChR beta subunit. As the beta-subunit tyrosine phosphorylation occurs before the formation of AChR clus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2008